Copied to
clipboard

G = C42.152D6order 192 = 26·3

152nd non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.152D6, C6.962- 1+4, C4⋊C4.208D6, C42.C28S3, C4.D1238C2, (C4×Dic6)⋊48C2, (C4×D12).25C2, D6.25(C4○D4), (C2×C6).238C24, (C2×C12).90C23, C2.58(Q8○D12), C4.Dic635C2, D6.D4.3C2, C12.129(C4○D4), (C4×C12).197C22, D6⋊C4.138C22, C4.38(Q83S3), (C2×D12).225C22, C4⋊Dic3.243C22, C22.259(S3×C23), Dic3⋊C4.123C22, (C22×S3).103C23, (C2×Dic6).299C22, (C4×Dic3).144C22, (C2×Dic3).123C23, C310(C22.46C24), (S3×C4⋊C4)⋊38C2, C4⋊C4⋊S336C2, C4⋊C47S337C2, C2.89(S3×C4○D4), C6.200(C2×C4○D4), (S3×C2×C4).128C22, (C2×C4).81(C22×S3), C2.23(C2×Q83S3), (C3×C42.C2)⋊11C2, (C3×C4⋊C4).193C22, SmallGroup(192,1253)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.152D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — C42.152D6
C3C2×C6 — C42.152D6
C1C22C42.C2

Generators and relations for C42.152D6
 G = < a,b,c,d | a4=b4=1, c6=d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=a2b, dcd-1=c5 >

Subgroups: 496 in 214 conjugacy classes, 97 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C42.C2, C42.C2, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, D6⋊C4, C4×C12, C3×C4⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, S3×C2×C4, C2×D12, C22.46C24, C4×Dic6, C4×D12, C4.Dic6, S3×C4⋊C4, C4⋊C47S3, C4⋊C47S3, D6.D4, C4.D12, C4⋊C4⋊S3, C3×C42.C2, C42.152D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2- 1+4, Q83S3, S3×C23, C22.46C24, C2×Q83S3, S3×C4○D4, Q8○D12, C42.152D6

Smallest permutation representation of C42.152D6
On 96 points
Generators in S96
(1 88 68 49)(2 50 69 89)(3 90 70 51)(4 52 71 91)(5 92 72 53)(6 54 61 93)(7 94 62 55)(8 56 63 95)(9 96 64 57)(10 58 65 85)(11 86 66 59)(12 60 67 87)(13 28 75 48)(14 37 76 29)(15 30 77 38)(16 39 78 31)(17 32 79 40)(18 41 80 33)(19 34 81 42)(20 43 82 35)(21 36 83 44)(22 45 84 25)(23 26 73 46)(24 47 74 27)
(1 23 7 17)(2 80 8 74)(3 13 9 19)(4 82 10 76)(5 15 11 21)(6 84 12 78)(14 71 20 65)(16 61 22 67)(18 63 24 69)(25 60 31 54)(26 94 32 88)(27 50 33 56)(28 96 34 90)(29 52 35 58)(30 86 36 92)(37 91 43 85)(38 59 44 53)(39 93 45 87)(40 49 46 55)(41 95 47 89)(42 51 48 57)(62 79 68 73)(64 81 70 75)(66 83 72 77)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 22 7 16)(2 15 8 21)(3 20 9 14)(4 13 10 19)(5 18 11 24)(6 23 12 17)(25 94 31 88)(26 87 32 93)(27 92 33 86)(28 85 34 91)(29 90 35 96)(30 95 36 89)(37 51 43 57)(38 56 44 50)(39 49 45 55)(40 54 46 60)(41 59 47 53)(42 52 48 58)(61 73 67 79)(62 78 68 84)(63 83 69 77)(64 76 70 82)(65 81 71 75)(66 74 72 80)

G:=sub<Sym(96)| (1,88,68,49)(2,50,69,89)(3,90,70,51)(4,52,71,91)(5,92,72,53)(6,54,61,93)(7,94,62,55)(8,56,63,95)(9,96,64,57)(10,58,65,85)(11,86,66,59)(12,60,67,87)(13,28,75,48)(14,37,76,29)(15,30,77,38)(16,39,78,31)(17,32,79,40)(18,41,80,33)(19,34,81,42)(20,43,82,35)(21,36,83,44)(22,45,84,25)(23,26,73,46)(24,47,74,27), (1,23,7,17)(2,80,8,74)(3,13,9,19)(4,82,10,76)(5,15,11,21)(6,84,12,78)(14,71,20,65)(16,61,22,67)(18,63,24,69)(25,60,31,54)(26,94,32,88)(27,50,33,56)(28,96,34,90)(29,52,35,58)(30,86,36,92)(37,91,43,85)(38,59,44,53)(39,93,45,87)(40,49,46,55)(41,95,47,89)(42,51,48,57)(62,79,68,73)(64,81,70,75)(66,83,72,77), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,22,7,16)(2,15,8,21)(3,20,9,14)(4,13,10,19)(5,18,11,24)(6,23,12,17)(25,94,31,88)(26,87,32,93)(27,92,33,86)(28,85,34,91)(29,90,35,96)(30,95,36,89)(37,51,43,57)(38,56,44,50)(39,49,45,55)(40,54,46,60)(41,59,47,53)(42,52,48,58)(61,73,67,79)(62,78,68,84)(63,83,69,77)(64,76,70,82)(65,81,71,75)(66,74,72,80)>;

G:=Group( (1,88,68,49)(2,50,69,89)(3,90,70,51)(4,52,71,91)(5,92,72,53)(6,54,61,93)(7,94,62,55)(8,56,63,95)(9,96,64,57)(10,58,65,85)(11,86,66,59)(12,60,67,87)(13,28,75,48)(14,37,76,29)(15,30,77,38)(16,39,78,31)(17,32,79,40)(18,41,80,33)(19,34,81,42)(20,43,82,35)(21,36,83,44)(22,45,84,25)(23,26,73,46)(24,47,74,27), (1,23,7,17)(2,80,8,74)(3,13,9,19)(4,82,10,76)(5,15,11,21)(6,84,12,78)(14,71,20,65)(16,61,22,67)(18,63,24,69)(25,60,31,54)(26,94,32,88)(27,50,33,56)(28,96,34,90)(29,52,35,58)(30,86,36,92)(37,91,43,85)(38,59,44,53)(39,93,45,87)(40,49,46,55)(41,95,47,89)(42,51,48,57)(62,79,68,73)(64,81,70,75)(66,83,72,77), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,22,7,16)(2,15,8,21)(3,20,9,14)(4,13,10,19)(5,18,11,24)(6,23,12,17)(25,94,31,88)(26,87,32,93)(27,92,33,86)(28,85,34,91)(29,90,35,96)(30,95,36,89)(37,51,43,57)(38,56,44,50)(39,49,45,55)(40,54,46,60)(41,59,47,53)(42,52,48,58)(61,73,67,79)(62,78,68,84)(63,83,69,77)(64,76,70,82)(65,81,71,75)(66,74,72,80) );

G=PermutationGroup([[(1,88,68,49),(2,50,69,89),(3,90,70,51),(4,52,71,91),(5,92,72,53),(6,54,61,93),(7,94,62,55),(8,56,63,95),(9,96,64,57),(10,58,65,85),(11,86,66,59),(12,60,67,87),(13,28,75,48),(14,37,76,29),(15,30,77,38),(16,39,78,31),(17,32,79,40),(18,41,80,33),(19,34,81,42),(20,43,82,35),(21,36,83,44),(22,45,84,25),(23,26,73,46),(24,47,74,27)], [(1,23,7,17),(2,80,8,74),(3,13,9,19),(4,82,10,76),(5,15,11,21),(6,84,12,78),(14,71,20,65),(16,61,22,67),(18,63,24,69),(25,60,31,54),(26,94,32,88),(27,50,33,56),(28,96,34,90),(29,52,35,58),(30,86,36,92),(37,91,43,85),(38,59,44,53),(39,93,45,87),(40,49,46,55),(41,95,47,89),(42,51,48,57),(62,79,68,73),(64,81,70,75),(66,83,72,77)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,22,7,16),(2,15,8,21),(3,20,9,14),(4,13,10,19),(5,18,11,24),(6,23,12,17),(25,94,31,88),(26,87,32,93),(27,92,33,86),(28,85,34,91),(29,90,35,96),(30,95,36,89),(37,51,43,57),(38,56,44,50),(39,49,45,55),(40,54,46,60),(41,59,47,53),(42,52,48,58),(61,73,67,79),(62,78,68,84),(63,83,69,77),(64,76,70,82),(65,81,71,75),(66,74,72,80)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E···4I4J···4O4P4Q4R6A6B6C12A···12F12G12H12I12J
order1222222344444···44···444466612···1212121212
size11116612222224···46···61212122224···48888

39 irreducible representations

dim1111111111222224444
type+++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2S3D6D6C4○D4C4○D42- 1+4Q83S3S3×C4○D4Q8○D12
kernelC42.152D6C4×Dic6C4×D12C4.Dic6S3×C4⋊C4C4⋊C47S3D6.D4C4.D12C4⋊C4⋊S3C3×C42.C2C42.C2C42C4⋊C4C12D6C6C4C2C2
# reps1112132221116441222

Matrix representation of C42.152D6 in GL6(𝔽13)

100000
010000
005000
000800
0000120
0000012
,
100000
010000
0012000
000100
000013
0000812
,
110000
1200000
000100
001000
0000811
000005
,
110000
0120000
0001200
0012000
000080
000008

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,3,12],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,0,0,0,11,5],[1,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8] >;

C42.152D6 in GAP, Magma, Sage, TeX

C_4^2._{152}D_6
% in TeX

G:=Group("C4^2.152D6");
// GroupNames label

G:=SmallGroup(192,1253);
// by ID

G=gap.SmallGroup(192,1253);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,1571,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽